V. A. Anisimova and A. F. Pozharskii

UDC 547.856.7

We have established that 2-methylperimidines readily react with aromatic aldehydes at 100-190°C in the absence of a solvent or catalyst, forming deeply colored 2-styrylperimidines (III) with yields of about 95%.

In the case of aldehydes with electron-accepting substituents (p-nitrobenzaldehyde, 5-nitrofurfural), at a lower temperature it is possible to isolate the carbinols (II) formed as intermediates, and on being heated to a higher temperature these decompose with the formation of the 2-styrylperimidines.

The structure of the compounds obtained (Table 1) was shown by elementary analyses, IR spectra, and the independent synthesis of substances (IIIa) and (IIIb) starting from the corresponding naphthalene-diamine and cinnamoyl chloride.

TABLE 1. Characteristics of the Compounds Obtained

Com- pound	MD. C	Solvent for crys- tallization	Color	Yield,	Conditions of fusion
IIa IIb IIIa IIIb IIIc	193 100 (decomp _*) 136 124—125 195 202—203	DMFA * Petroleum ether Petroleum ether Benzene—petro- leum ether Benzene	Dark yellow Brown Claret Claret Dark claret	95 60 70 95 94 50—75	120°, 5 min 60°, 5 min 150°, 2 h 150°, 5 h 190—195°, 30 min 100°, 10 min †

^{*}It was impossible to select a solvent.

Rostov State University. Scientific-Research Institute of Physical and Organic Chemistry, Rostov-on-Don. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 137-138, January, 1974. Original article submitted June 18, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

[†] The reaction takes place better in acetic anhydride.